Article 1415

Title of the article

              ON FREDHOLM PROPERTY OF AN INTEGRO-DIFFERENTIAL OPERATOR IN THE PROBLEM OF                                        ELECTROMAGNETIC WAVE DIFFRACTION ON A VOLUMETRIC BODY, PARTIALLY                             SCREENED BY A SYSTEM OF FLAT SCREENS

Authors

Tsupak Aleksey Aleksandrovich, Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), altsupak@yandex.ru

Index UDK

517.968, 517.983.37, 517.958:535.4

Abstract

Background. The aim of this work is to study a new vector problem of electromagnetic wave scattering on a partially shielded volumetric inhomogeneous anisotropic body.
Material and methods. The problem is considered in the quasiclassical formulation; the original boundary value problem is reduced to a system of integro-differential equations; the properties of the system are studied using pseudodifferential calculus in Sobolev spaces on manifolds with a boundary.
Results. The quasiclassical formulation of the diffraction problem is proposed; the boundary value problem for Maxwell’s equations is reduced to a system of integrodifferential equations; the operator of this system is treated as a pseudodifferential operator (ψDO) in Sobolev spaces on manifolds with a boundary; the quadratic form of the matrix ψDO is studied and is shown to be coercive; the Fredholm property of the ψDO is proved.
Conclusions. The matrix ψDO is proved to be a Fredholm operator of zero index; this results can be used for further theoretical study of the diffraction problem as well as for validation of numerical methods.

Key words

vector diffraction problem, integro-differential equations, Sobolev spaces, pseudodifferential operators, coercive quadratic form. 

Download PDF
References

1. Smirnov Y. G., Tsupak A. A. Advances in Mathematical Physics. 2015, vol. 2015, 6 p.
2. Il'inskiy A. S., Smirnov Yu. G. Difraktsiya elektromagnitnykh voln na provodyashchikh tonkikh ekranakh. Psevdodifferentsial'nye operatory v zadachakh difraktsii [Electromagnetic wave diffraction on thin conducting screens. Pseudodifferential operators in diffraction problems]. Moscow: IPRZhR, 1996, 173 p.
3. Agranovich M. S. Sobolevskie prostranstva, ikh obobshcheniya i ellipticheskie zadachi v oblastyakh s gladkoy i lipshitsevoy granitsey [Sobolev spaces, their generalizations and elliptic problems in areas with smooth and Lipschitz boundaries]. Moscow: MTsNMO, 2013, 379 p.
4. Tribel' Kh. Teoriya interpolyatsii. Funktsional'nye prostranstva. Differentsial'nye operatory [Interpolation theory. Functional spaces. Differential operators]. Moscow: Mir, 1980, 664 p.
5. Costabel M. SIAM Journal of Mathematical Analysis. 1988, vol. 19, no. 3, pp. 613–626.
6. Banjai L. Boundary element methods. Zurich, 2007.
7. Valovik D. V., Smirnov Yu. G. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matkmaticheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2009, no. 4 (12), pp. 70–84.
8. Valovik D. V, Smirnov Y. G. Differential Equations. 2012, vol. 48, no. 4, pp. 517–523.

 

Дата создания: 12.04.2016 09:23
Дата обновления: 12.04.2016 09:44